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Unified 3-D Definition of CPW- and CSL-Mode
Characteristic Impedances of Coplanar Waveguide

Using MOM-SOC Technique
Lie Zhu, Senior Member, IEEE

Abstract—Characteristic impedances of two dominant modes,
even CPW- and odd CSL-mode, in the coplanar waveguide (CPW)
are defined and characterized with resorting to the network
equivalence of a finitely extended CPW line in a three-dimensional
(3-D) method of moments (MoM) platform. By introducing the
port model with a pair of even or odd symmetrical current sources,
a determinant MoM scheme is at first formulated to establish
the explicit relationship among the port currents and voltages. A
short-open calibration (SOC) technique is then accommodated
in this MoM to remove the parasitic port discontinuity effects.
Our results are compared with those of the two-dimensional (2-D)
definition and demonstrate for the first time the equivalent 3-D
characteristic impedances of both CPW- and CSL-mode.

Index Terms—Characteristic impedance, coplanar waveguide,
CPW-mode, CSL-mode, method of moments, short-open calibra-
tion.

I. INTRODUCTION

CHARACTERISTIC impedance of a planar transmission
line [1] has been commonly used as a fundamental circuit

parameter in the design of today’s high-frequency integrated
circuits. Its definition is usually carried out in terms of the
transverse field quantities from a two-dimensional (2-D) nu-
merical calculation under the quasi-TEM assumption. A called
TEM equivalent characteristic impedance of a microstrip line
was originally introduced in [2] and has been extensively inves-
tigated [3]–[5] via three-dimensional (3-D) method of moments
(MoM) together with numerical de-embedding techniques.
This 3-D definition not only allows eliminating the ambiguity
of three different 2-D definitions [1] at high frequency, but also
permits a direct and absolute comparison between simulated
and measured characteristic impedances as concluded in [4].

In contrary, coplanar waveguide (CPW) has also been gaining
a wide application in microwave and millimeter integrated cir-
cuits (MMICs). Due to the existence of three separate conduc-
tors, the unwanted coupled-slotline (CSL) mode may be excited
in any asymmetrical CPW structure, for instance, CPW bend
[7], and propagates together with the dominant CPW-mode. To
meet the need in modeling a variety of CPW circuits and sup-
pressing the harmful mode-conversion at an asymmetrical CPW
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geometry, it is a critical issue to effectively define the relevant
two characteristic impedances with regarding to even CPW- and
odd CSL-mode. Unfortunately, very little work has been done
to investigate these two characteristic impedances except the
2-D TEM-mode voltage-power definition [8]. The authors in [7]
tried to directly de-embed the 3-D impedance from the MoM
simulation, but eventually failed to achieve stable results.

This work aims at unified 3-D definition of characteristic
impedances of these CPW- and odd CSL-mode characteristic
impedances via our developed hybrid method of moments
(MoM) and short-open calibration (SOC) technique [6],
named by “MoM-SOC.” In this case, a finitely extended CPW
line section is at first modeled in terms of the 3-D MoM
scheme and its transmission parameters, such as characteristic
impedance and effective dielectric constant, are then extracted
relying on the ideal CPW short and open standards [9] in the
self-consistent MoM. Extensive results originally exhibit their
frequency-dependent electrical behaviors and are then validated
by only available 2-D results [8].

II. CPW- AND CSL-MODE CHARACTERISTIC IMPEDANCES

Fig. 1(a) depicts the physical layout with three cascaded CPW
line sections arranged for unified 3-D definition of both CPW-
and CSL-mode characteristic impedances using our MoM-SOC
technique. The left- and right-side CPW feeding lines are si-
multaneously driven by a pair of longitudinal current sources in
order to formulate a determinant admittance-type MoM scheme.
By enforcing that and , the CPW-mode and
other high-order even modes may be excited. As the line length
( ) is selected electrically long, however, only the CPW-mode
can reach to the uniform CPW line section with the two ter-
minals, i.e., and . Fig. 1(b) denotes the relevant equiva-
lent network, in which the two feeding lines are modeled as the
two identical error boxes [6] while the uniform central CPW is
perceived as a CPW-mode transmission line with the unknown
characteristic impedance ( ) and effective dielectric con-
stant ( ).

The error box here comprises a two-port network ([ ]) and
shunt admittance ( ), and its overall network parameters can
be self-consistently derived relying on the two SOC calibration
standards [6], i.e., ideal CPW-mode short and open elements [9].
As a result, the CPW-mode transmission line network parame-
ters can be effectively extracted and expressed here as a two-port
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Fig. 1. Physical layout and equivalent transmission line network for unified
3-D definition of CPW- and CSL-mode transmission parameters of coplanar
waveguide using fullwave MoM-SOC technique. (a) Physical layout; (b) equiv-
alent network for CPW-mode; and (c) equivalent network for CSL-mode.

ABCD-matrix with the elements of , , , and
such that

(1)

(2)

in which is the light velocity and is the integer number. Very
similarly, the characteristic impedance ( ) and effective di-
electric constant ( ) of the odd CSL-mode can be also char-
acterized using the above MoM-SOC under the odd excitation
at the CPW feeding ports, i.e., and .
Fig. 1(c) illustrates its equivalent network topology in which
each feeding line section is perceived as an alternative error box
with the circuit network ([ ]) and series impedance ( ). In
Fig. 1(b) and (c), and are attributed to the offset distance
( ) of our selection between the impressed current source and
the symmetrical location at each port under the even and odd
excitation, respectively.

III. RESULTS AND VERIFICATION

Now, the above MoM-SOC technique is executed to de-
embed and extract the CPW- and CSL-mode transmission pa-
rameters of a finitely extended CPW line over a wide frequency
range. Fig. 2(a) and (b) depict the calculated effective dielec-
tric constants and characteristic impedances of a uniform CPW
line with the fixed length of mil under three different
feeding line lengths ( ). Here, the transverse mesh size is kept
5 mil while the longitudinal counterpart is selected as 5, 10, and
15 mil with regarding to , 250, and 375 mil, respec-
tively. First of all, all the parameters are observed here to consis-
tently converge to their relevant smoothly varied curves (solid

(a)

(b)

Fig. 2. Convergence behaviors of the SOC-extracted CPW- and CSL-mode
transmission parameters with respect to different feeding line lengths (L ).
(a) Effective dielectric constant (" and " ) and (b) characteristic
impedance (Z and Z ).

lines), especially at low frequency, as is stretched to 375 mil.
Meanwhile, they appear to gradually rise up with frequency,
thus exhibiting their frequency dispersion behaviors in a layered
structure. Further, is found always lower than , indi-
cating us that the wavelength of CSL-mode is longer than that
of CPW-mode at the same frequency. It is the reason why the
longer should be usually selected in the accurate modeling of
the CSL-mode related electrical behaviors in CPW discontinu-
ities. As the frequency increases from 2.0 to 20.0 GHz,
tends to be almost unchanged at the 48.5 while signifi-
cantly goes up from about 120 to 200 . It is basically attributed
to the fundamental dissimilarity between the CPW-mode and
CSL-mode propagation performances along the uniform CPW
line, i.e., quasi-TEM and non-TEM natures.

To validate the above-derived transmission parameters, our
newly derived 3-D MoM-SOC results are plotted in Fig. 3(a) and
(b) together with those obtained from the 2-D MoM technique
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Fig. 3. Comparison among the SOC-extracted CPW- and CSL-mode trans-
mission parameters and those from the 2-D MoM technique in [8]. (a) Effective
dielectric constant (" and " ) and (b) characteristic impedance (Z
and Z ).

[8]. It can be seen in Fig. 3(a) that both and are in ex-
cellent agreement with each other and they increment as a quasi-
linear function of frequency over the range of 5.0 to 30.0 GHz.
Also, as depicted in Fig. 3(b), our 3-D defined is found

the almost same as the 2-D while the 3-D is rea-
sonably close to the 2-D under the voltage-power defini-
tion [8]. As pointed out in [7], there is no unanimous definition
of CSL-mode characteristic impedance due to its non-TEM na-
ture [7]. However, it has been well examined here through our
unified 3-D MoM-SOC technique that the voltage-power defi-
nition is more suitable for both CPW- and CSL-mode charac-
teristic impedance.

IV. CONCLUSIONS

A fullwave MoM-SOC technique is applied here to unified
3-D definition of characteristic impedances of two propagation
modes, i.e., CPW- and CSL-mode, in the uniform CPW line
with finitely extended length. Our derived results for the first
time demonstrate the 3-D transmission parameters of both
dominant modes and also are well validated by their 2-D
counterparts. This 3-D definition not only helps us to clear the
ambiguity of CPW- and CSL-mode characteristic impedances,
and also allows us to characterize and measure the multi-mode
circuit performance of CPW structures/circuits with complex
configurations based on the same characteristic impedance
standards [4].
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